
Programming
in

elementary school

3 M o d e l s 3 M o d e l s

2

Preface p. 3
Preparation p. 4
Function test p. 5
Editor p. 6
Save p. 6
Load p. 7
Blocks/Commands p. 7
Traffic light p. 8
Pedestrian signal with request button p. 9
Actuators/sensors p. 10
Buttons p. 10
LED p. 11
Pedestrian signal with flashing light p. 14
Hand dryer p. 15
Hand dryer with light barrier p. 16
Phototransistor p. 17
Motor p. 17
Hand dryer with LED display p. 20
Barrier p. 21
Parking garage barrier p. 22
Parking garage barrier with optical display p. 28
Possible errors p. 30

Contents

3

Hello!
Allow me to introduce myself - my

name is RoBo, and I’ll be helping you
as you work through the different

exercises.

Before you start with the exercises, there are a few basic ground
rules I need to explain.

With modules from fischertechnik, you can build the
models you wan to control.

The micro:bit is a small, programmable
computer. It has an LED screen, two
buttons, a light sensor, a Bluetooth
antenna, and an acceleration sensor
and compass.

The micro:bit is connected to the micro:bit IO
F5 via a male multipoint connector. All inputs
and outputs can be accessed via sockets. In
addition, an external power source can be
connected.

With just a few clicks, you can use
makecode to quickly create your own
programs for the microprocessor and
make the model move.

We hope you enjoy completing these exercises.

Sincerely, RoBo

Preface

4

Before you begin building the models and start programming, you
need to make a few preparations.

First, unpack your micro:bit. It is delivered packaged in a small
box.

Important: When you plug it into the connector strip on the
adapter on your model later on, the A and B buttons
have to face upward.

Use a USB cable to connect the
micro:bit to a free USB port on
your computer. A yellow LED on
the bottom of the micro:bit will
light up. The LED matrix on the
top will display a red X.

Start your web browser and open the program editor under

https://makecode.microbit.org

Click “New Project”. The makecode working screen will appear. I
will explain it in more detail to you in the next section. Right now, you
are just going to test the program in conjunction with the micro:bit.

Use “More…” to change the programming language to “German”.

Click the selection “Basic”. All commands from this block area will
appear in this block.

For our test, use the command “show LEDs”.

Drag the command into the empty area for the command “on start”.

Preparation

Functional test

5

When you click the individual LEDs, they will be activated and
displayed in the simulation.

Create a plus sign using the LEDs. Your working screen should
look like the one shown on the image.

Press the “Download” button to send the program to the
micro:bit. When you activate the button, the following line will
appear at the bottom of the screen:

Activate the arrow behind “Save” and select “Save as”.

The “Save as” working screen will appear. Here, select
the USB drive to which you connected the micro:bit. This is
displayed visually.

Important: The file type must always be a HEX file.

When you click “Save”, the LEDs will go out on the
micro:bit and the yellow LED on the bottom will flash.
This indicates that the program was transmitted.
Once this is done, the plus sign will be displayed.

If everything worked correctly, I would now like to explain the
Editor to you in a little more detail.

6

The screen is divided into three sections: Simulation, Programming
commands, and the Programming screen.

Other important buttons:

Start/Stop the simulator

Download the program to the micro:bit

Save the project

Undo

Zoom In/Zoom Out

Once you have completed a project, you have to save it. To do so,
select the “Save” button.

Simulation

Programming screen

Programming commands

Stop the
simulator

Restart the
simulator

Slow-Mo Mute audio Launch in
full screen

Editor

Save

7

Click the arrow beside “Save” and then “Save as”.

Select a folder or create a new folder where you would
like to save your project.

Important: Assign a unique name to your
project.

If you would like to use a finished project or continue
working on a project, you have to load it from your storage

medium. To do so, you need
the home page. The home page
appears when you launch makecode.

You can find your projects under “My projects”.

However, you can also select the “Import” button. A context menu
will appear. Here, select “Import file”.

Another context window will appear. Press
the “Browse” button to
access your data storage
media. Once you have
found your project, confirm with “Go ahead!”

The instructions use the terms
“Block” and “Commands”.
makecode is designed such that
all commands are sorted into
blocks by function. An example
is provided at the left for the
block “LED”.

OK, now that you are done with that, you can try out your first model.

Load

Blocks
Commands

8

You have probably seen many different kinds of traffic light
systems. You see pedestrian signals or whole crossing systems
almost every day, so this principle certainly isn’t new to you. To
put it simply, in such systems lamps are switched on and off in a
certain sequence.

What will make your traffic light unique is that it will be switched
on by a button located on the mast.

The technician first switches on the system using a control box.
Then the red lamp will light up. Only when the pedestrian presses
the request button will the system switch to green, after which they
can cross the street.

The next time you are going home from school or taking a walk with
your parents, and you pass a pedestrian signal, take a look at it.

Ask yourself the following questions:

• Is the system switched on?
• What lamps are illuminated?
• Does the system have a signal request button?
• What happens when it is pressed?
• How long does the green phase last?
• What happens after the green phase?

Simply write the answers down on a sheet of paper, then use them
later when you write your own programming commands.

Important: Before you start operating real models, you can always
test out your programs first using the programming simulator.

Technical note: You will need a fischertechnik
power supply for all models. This is not included
in the scope of delivery, and must be purchased
from fischertechnik.

Traffic light

9

Use the building instruc-
tions to build your first
model.

Wire the model according
to the wiring diagram.

For this model, I am going
to give you a task and a

secondary task. You then
have to solve these by creating a control program.

The overall system should be switched on using a
service switch, “Button A” on the micro:bit. Then the
light will be red. Only when the request button on the
mast is pressed will the red light switch over to green
after 2 seconds. The green phase should last 5 seconds.
Then the system will switch back to red and wait for the
request button to be pressed once again.

We will create your first project together.

Next, start the “makecode” editor. You will already be familiar with
the screen that appears.

To ensure you can work with all available commands, Press
“Advanced” to expand the command list.

Important: Ensure that you have
switched to the “Advanced” area of
the makecode blocks by pressing the
button.

Pedestrian signal with request button

trafficlight1.hex

10

Hang on, now I need to explain the two electrical components
installed in the model to you. These are called “actuators”
or “sensors”, depending on their function.

Actuators are called actuators because they are active, they do
something like activate a motor or a lamp. Sensors, such as a button,
can be used to control actuators.

I’d like to start with the sensor button.

Buttons are called touch sensors. If you press the red button, a
contact is moved mechanically within the housing and current flows
between connections 1 and 3. At the same time, contact between
connections 1 and 2 is interrupted. This means you can add the button
to your model as a switch.

Next, we have an actuator - the light diode or LED

The name LED stands for light-emitting diode. When electrical current
flows through the diode (forward direction), it emits light.

Buttons
Toggles

Normally
closed

Normally
open

3

1

2

3

1

2

Sensors

Electrical
components

Actuators

Actuators
Sensors

Buttons

LED

Circuit symbols

11

There are two LED modules in the construction kit. You can use them
as normal lamps, or use them later as signal transducers on a light
barrier.

Ensure correct polarity when completing an electrical
connection.

I will explain the other components to you when we get to the specific
tasks.

Now we’ve explained everything important and you can start with
your first program.

Let’s start in sequence. Each program you write always starts with
a “Start” command.

In the task, this means that the program is started by pressing the A
button on the micro:bit.

You use the command “on button … pressed” from the “Input”
block. Drag the command to your programming screen.

When the A button is pressed on the micro:bit, the red lamp
(LED on PIN13) should be switched on. Dock the command from
the “Pins” block in the space between “on button … pressed”.
Change the input P0 to P13 and the value 0 to 1.

The first part of the program is complete. You can
already see the result on your
simulation. Click on the A button. Pin 1 will be
switched to on, marked with a logical 1 and
shown in red. If you’ve already connected
the model to your computer, the red lamp
should be illuminated.

Circuit symbols

12

The blocks “on start” and “forever” are not required and can be
deleted. Right click the command and select “Delete Blocks” in the
context menu.

Next, you will create a program section with the command “on pin
P1 released” embedded from the “Input” block. Drag the command
to your working screen.

Change the input “P0” to “P1”.

Now a pause command comes next.
You can find it in the “Basic” block
“pause (ms) xxxx”.

Drag the command to the docking
point and change the time input to
2000 for 2 seconds.

What will happen? if you press the button on “P1”,
the red lamp should go out and the green lamp
should come on. The red lamp is connected to
“Pin13” and the green lamp to “Pin12”. Here, you

need the command “digital write pin ….” from the “Pins” block. You
dock it under the pause command.

Since you need the command
twice, you can simply duplicate
it. Right click the command
and select “Duplicate” in the
context menu. Dock the second
command under the last input.

Change the input “P1” to “P13”
in the first
command

and switch from “1” to “0”. In the second
command, change “P1” to “P12” and “0” to “1”.

You can test the sub-program once again. Press
the virtual A button to simulate it. Pin 13 will be
shown in red.

13

Send the sub-program to the micro:bit (see page 5).

Press the A button on the micro:bit as well. The red lamp will light up.

In the simulation, click Pin1. This will be shown as activated.

After 2 seconds, the red lamp will go out and P 13 will go out in the
simulation. The green lamp or Pin 12 will switch on.

If you press the pedestrian button on the traffic
light mast, the red lamp will go out and the green
lamp will go on.

In this task, your job is to make the green lamp
go off after 5 seconds, and the red lamp come
back on.

Insert the command “pause (ms) xxxx” from
“Basic”, followed by 2 commands from “Pins” “digital write pin ….”.

Change the pause time to 5000 for 5 seconds.

Change the pin assignment to “P12” and “P13”.
Switch “P13” to “1” and “P12” to “0”.

Complete a virtual test first here as well. After
5 seconds of pause time, Pin12 is switched off
and Pin13 will go back on.

Send the entire program to
micro:bit and start it on the
model. Here as well, the
green lamp will switch to
red after a 5 second pause.

“OK, now
you’ve taken a big step. Your

program is ready and you can test it out”.

14

Let's start the second part of the task.

After the 5 seconds is complete, the green lamp should flash three
times. The flashing frequency is 1 second. Then the light is switched
to red.

Here, you will use the command “repeat x times” from the “Loops”
block. Dock it after the 5 second
pause.

Change the repetitions from “4” to
“3”.

Add a 1 second pause. Then the
command “digital write pin P12 to 0”
follows.

Then another 1 second pause
command follows, and the

command to
switch on the
P12.

After the write command, add a 1 second pause command.

Now the second part of the task is programmed. Save the file on your
computer. Test it out virtually, then test it a second time on your model.

Pedestrian signal with flashing light

trafficlight2.hex

15

You definitely don't have something like this in your bathroom at home.
You have a big towel hanging on a hook. But in public bathrooms, like
the bathroom at your school or a restroom at a restaurant, you will
often see electric blowers mounted on the wall that blow out hot air
to dry your hands.

They are a great invention, especially ones that are
so modern you don’t even have to push a button
to turn them on. Simply hold your hands in front of
them and they start up.

Now, you can use these building instructions to
create a hand dryer with a touchless on and off
switch, then wire it according to the wiring diagram.

Ask yourself the following questions before starting this task:

• How is the hand dryer switched on?
• Does a control light switch on?
• When does the hand dryer switch back off?
• How long is the drying time?

Simply write the answers down on a sheet of paper, then
use them later when you write your own programming
commands.

We hope you enjoy working on this task.

Sincerely, RoBo

Hand dryer

16

Hand dryer with light barrier

Use the building instructions to build your second model.

Wire the model according to
the wiring diagram.

For this model as well, I am
going to give you a task
and a secondary task. You then have
to solve these by creating a control
program.

Program the hand dryer so that when a user reaches through the
light barrier, the motor with propeller starts up. When they take
their hand back out of the light barrier, the motor must stop.

Of course, I will be helping you with this
task too.

Just as with the previous task, start your
Editor first.

Important: Once again, make sure you have activated the
“Advanced” block with the appropriate button.

Before you begin programming, I need to introduce you to another
sensor and actuator.

fan1.hex

17

To create the light barrier you will need to switch the fan
motor on and off, you will need the LED you have already
used, as well as a phototransistor.

A phototransistor is an electronic switch (sensor) that reacts
to light. You’ve probably wondered how the entryway door opens
automatically when you go into a department store without any
buttons or switches being pressed.

A light barrier is used to open the door. It consists of a light source
(transmitter) and a sensor (receiver). In the building kit, an LED
component is used as the sensor, and a phototransistor component
is used as the receiver.

The motor is a direct current motor (actuator). It converts electrical
energy into mechanical energy. This causes the motor axis to rotate.

You can control the motor directly with the micro:bit.

Now you’ve built and wired your model. Next you need to program it.

You have already started the Editor and can start with the “on start”
block. It is already shown on the screen, so you can go ahead and
add another command.

As you can see from the building instructions, the motor is connected
to “Pin16” and “Pin15”. Pin16 should be the negative terminal, and
Pin15 the positive terminal. Because of this, Pin16 is set to “0” on
start. The LED is connected to Pin8. Since it should
be illuminated forever, you can add the command
you need to the “on start” part of the program.

M

Phototransistor

Motor

Circuit symbols

Circuit symbols

18

You need “forever” for the rest of the program. This command is also
already on your programming screen.

Since you are working with a phototransistor, you have to convert or
read in the value it delivers from a digital value to an analogue value.

Before you continue, I need to explain two terms to you: “digital”
and “analogue”. What do they mean?

Digital values can only have two conditions, 0 or 1, yes or no. Here’s
an example: A lamp is on (1) or off (0).

If you need an analogue value, it can be in a certain area and
have multiple values. For instance, if you want to determine a
certain temperature range or switch on a fan motor if the outdoor
temperature is between 20 and 24 degrees.

First, add the command “digital write pin ….”. Switch “P0” to “P1”,
since you have connected the phototransistor to this

pin.

Under the “Pins” block, you will find a command
“analog read pin …”. Place it on the “0” of the first command.

Now you need a command that queries “If an event is true, then
action1 should be carried out. If this is not the case (else), action2
should be carried out”.

You can find this command under the “Logic” block, under “if true
then --- else”. Dock this command in your program.

Digital
Analogue

19

I have already written the whole program for you and discovered
that the photoconductive cell switches at an analogue value of
500. This value must be queried in the program. You can find the
command under the “Logic” block.

Now add the query “if “analog read pin P1” “< smaller” “500””
to your program.

You can duplicate the
command here and insert
it at the right spot.

Insert the command
“digital write pin ….P15”
for “else”. Change to “1”.
Duplicate the command
and insert it under “else”.
Change to “0”.

Now you have completed task 1. Save and test out
the program.

20

Here is another task you need to solve.

There is an LED matrix on your micro:bit with 25 LEDs. You should
now use it to display the current switching status of the motor. If
the motor is running, an + should appear. Otherwise the matrix
should be out.

It is actually very simple. You can find the command “Show LEDs” in
the “Basic” block. Drag it before the command “otherwise”.

Click the relevant LEDs. These are shown in white.

Insert the command “clear
screen” in “else” from
the “Basic” and “...more”
block.

Now you are done. Save
the program once again
and test it on your model.

Hand dryer with LED display

fan2.hex

21

In many cities, you can find parking garages or large parking
lots that use a parking barrier to control vehicles driving in
or out. If the parking garage is completely full, for instance, a
parking guidance system displays this. On some streets, you

will see electronic displays that
tell you which parking garages still
have space, and which are full.

There are different ways to activate a
barrier.

For instance by entering a number code, a code card, or using a light
barrier like the one you will be using in your model.

Ask yourself the following questions before starting this task:

• When does the barrier open?
• Does a control light switch on?
• When does the barrier close again?
• How long is the barrier open?

Simply write the answers down on a sheet of paper, then
use them later when you write your own programming commands.

We hope you enjoy working on this task as well.

Sincerely, RoBo

Barrier

22

Use the building instructions to build your third model.

Wire the model according to the wiring diagram.

For this model as well, I am going to give you a task and, since
you're already an expert programmer, three secondary tasks. You
then have to solve these by creating a control program.

When a vehicle drives through the light barrier and interrupts the
light current, the barrier should open after 1 second. It should
remain open for 5 seconds and then close again.

Of course, I will be helping you with this
task too.

Log into the internet and start your Editor
just as you did for the previous tasks.

Important: Once again, make sure you have activated the
“Advanced” block with the appropriate button.

Parking garage barrier

barrier1.hex

23

Here as well, you will start with the program section
“on start”.

To ensure the program works correctly later on, you
must first insert the command “led enable” from the “Led ... More”
block.

To start the program, the motor connections on “P16” and “P15”
should be set to “0”.

You have
c o n n e c t e d
the LED
for your
light barrier
to “Pin13”. This should be
illuminated after you start the
program. Insert the command
and change its properties.

The main part of the program once again starts with the command
“forever”.

Look at the program for the hand dryer once again. In this program,
you query the light barrier and determine the value of the phototran-
sistor. You can use this command sequence for the barrier as well.

Just as for the hand dryer, drag the command you
need into your program. The phototransistor is
connected to “Pin1”, just like the barrier. Change
the value accordingly.

The next command is the “if ... Then” command from the “Logic”
block. Drag the command for a query to the “true” rhombus. Change
the value after the “<” to 500.

24

If the value for the light barrier is less than 500, the barrier should
open. To do so, insert “digital write pin ….” twice
for “then”. Change the first command to “P16” and
to “1” and the second command to “P15” and “0”.

When the program is started, the barrier will open or the motor will
start. It should run until the switch on “Pin3” is closed.

To do so, you need the command “while … do” from the “Loops”
block. Drag it under the last command.

Replace the “true” rhombus with a query from the “Logic” block.

Insert the command “digital value of ...” as the first variable. Change
the pin assignment to
“P3”.

In the empty program
section, insert
the command
“pause (ms)”
with a value

of 100 from the
“Basic” block.

25

Test the sub-program. If you interrupt the light barrier, the barrier
opens, activates the switch and stops.

In the task, your job is to ensure that when the light barrier is
interrupted, the barrier opens after 1 second. Add this command to
the right spot and change the wait time to 1 second.

The task also requires that the barrier close again after 5 seconds.
To do so, add the command “pause (ms)” once again. Then the
motor should turn in the other direction until the button on “Pin0” is
pressed.

Simply duplicate the commands
you need from the first part of the
program.

Change the value of “P16” to “0” and
the value of “P15” to “1”. Change the
value of the button from “P3” to “P0”.

To ensure the barrier remains closed,
you also need to change the last
command from “P16” to “P15”.

26

Test the entire program. If you interrupt the light barrier, the barrier
opens, activates the switch and stops. The barrier closes again
after a specified wait time.

What happens if the barrier is open when the program starts?
You would need to close it manually. But why don’t we do this by
adding to our program?

If the barrier is open when the program starts, it should close first.

Duplicate the program block into the start program from the “forever”
section.

Now you can test out the
program. Mechanically move
the barrier to a middle position.
After the program has been
downloaded, first the barrier

will close, and then process the “forever” part of the program.

barrier2.hex

27

Now, the entire program is as follows.

Save the program on your computer. Use a new name, such as
Barrier2.

I have another idea. What if you added a service switch (button A)
to the system so you can use it to start the system?

Add a program section you can use to start the
system.

Of course, you will add the command you need
to the “on start” part of the program. Insert the
command “while … do” from the “Loops” block
before LED activation.

Replace the “true” rhombus with the command
“not” from the “Logic” block.

To query button A, use the command “Button A is pressed” from the
“Input” block.

Add a duplicate of “pause (ms) 100” to the space for “do”.

barrier3.hex

28

Now you can test
out the program.
Move the barrier to a
middle position. After
the program has
been downloaded, it
will wait for button
A. Once it is pressed, first the
barrier will close, and then
process the “forever” part of
the program.

Save the program on your computer. Use a new name, such as
Barrier3.

I have another programming addition for you.

The position of the barrier should be indicated visually
on the LED field. When the barrier is closed, an X will
appear, and when it is open a check.

First, add the command “led enable” from the LED block to the “Start
block”.

Dock the command using the “while … do” command and change
the value from “false” to “true”.

Then insert the command
“show icon” from the “Basic”
block. Click the arrow and
select the display of an X.
This command sequence is
used to switch the barrier to closed on start.

Parking garage barrier with optical display

barrier4.hex

29

You need the command “show
icon” in two places in the “forever”
program section. Once when the
barrier is open and then once
again when it is closed. Insert the
command and change the LED
display.

Test the program with the addition.
Move the barrier to a middle

position. After the program has been downloaded, it will wait for
button A. Once it is pressed, the graphic display (X) will appear and
the barrier will close, and then it will process the “forever” part of
the program. If the light barrier is interrupted, the barrier will open
and switch the LED display to the check for 5 seconds. When the
barrier is closed once again, the LED display also changes.

Save the program on your computer. Use a new name, such as
Barrier4.

30

If something isn't working right ...

... hopefully you can find a solution for your problem in this table.

Problem Possible cause Fault correction

1. makecode software does not
connect to the micro:bit

USB cable is not connected Insert USB cable

2. Button does not work Electric plug inserted on the wrong connections of the
button or micro:bit.

Use connections 1 and 3 on the button.
Insert the micro:bit plug onto the two
sockets for I5, I4 or I1.

3. Phototransistor does not work Electric plug plugged in incorrectly On phototransistor: Insert red plug on the
side with the red dot, green plug on the
side without a marking.

Light barrier LED does not light up. Connect LED to l1 and P1, ensuring correct
polarity

LED illuminates but misses the phototransistor Move the LED so that it strikes the
phototransistor

4. Motor does not turn Motor not connected to the micro:bit Connect the motor to the micro:bit as
described in the wiring diagram for the
model

Motor connected to the wrong motor output on the
micro:bit

Use the wiring diagram to check which
output M1 of the motor belongs on and
connect it to this output

5. Motor turns in the wrong
direction

Red and green exchanged on electric plugs Exchange red and green plugs on the
motor

Change the direction of rotation for the
motor in the control program Pin15/Pin16

8. Problem not described here Not found Contact fischertechnik directly, for
instance at:
www.fischertechnik.de

Finally, I would like to give you an important web address. If you want to learn more
about the micro:bit, you can find further information at

https://microbit.org

Well, it seems we’ve reached the end. I wish you lots of success program-
ming the ft models with makecode.

31

1st edition 2019

fischertechnik GmbH
Klaus-Fischer-Strasse 1
72178 Waldachtal

Tel: (+49) 7443 12 - 4369
E-Mail: info@fischertechnik.de

Hermann Weininger,
Head teacher and
master electrician

