fischertechnik롱

Additional Programs for the Electronics Module Part No. 152063
Contents:
1.1 Additional programs for the Electronics Module 1
1.2 Wiring of the inputs and outputs 2
1.3 Additional programs for digital technology 4
1.3.1 AND / OR Logic Gate 4
1.3.2 XOR Logic Gate 5
1.3.3 D Flip-Flop with Reset, JK (RS) Flip-Flop, NOT Logic Gate 6
1.3.4 Test Circuit - OR/AND/XOR/NOT Logic Gate, D Flip-Flop with Reset, JK (RS) Flip-Flop 7
1.3.5 Monostable or One Shot 8
1.3.6 Test Circuit - Monostable 8
1.4 Other Functions 9
1.4.1 Threshold and Differential Switch (analog comparator) 9
1.4.2 Test Circuit - Threshold and Differential Switch 9
1.4.3 Binary or BCD Counter 10
1.4.4 Test Circuit - Binary or BCD Counter 10
1.4.5 Dual Programmable Frequency Divider 11
1.4.6 Test Circuit - Dual Programmable Frequency Divider 11
1.4.7 Light Effects / Frequency Generator 12
1.4.8 Test Circuit - Light Effects / Frequency Generator 12
1.5 Transistor Test 13
1.5.1 Test Circuit - Transistor Test 13

1.1 Additional Programs for the Electronics Module

For fans of digital technology, these additional functions are provided in the fischertechnik Electronics Module (part no. 152063) and can be selected using the DIP switches. The added features are not described in the booklets, as they are designed as additional projects after the construction of the models contained in the PROFI Electronics kit (part no. 524326).

As with the programs described in the booklet, the setting of the DIP switches only becomes effective after a short disruption of the supply voltage (i.e. switch it off and on again).

The special functions include; AND logic gate, OR logic gate, XOR logic gate, D flip-flop with reset, JK (RS) flip-flop, monostable, threshold and differential switch (analog comparator), binary or BCD counter, dual programmable frequency divider, as well as lighting effects and frequency generator.

The following is a description of these additional functions.

fischertechnik

1.2 Wiring of the inputs and outputs

For additional programs, with up to 4 outputs and up to six inputs, the I/O numbering is from left to right as shown below:

Outputs			
M 1		M 2	
O 1	O 2	O 3	O 4

Inputs					
I1		I2		I3	
E1	E2	E3	E4	E5	E6

Examples: $\quad \mathrm{O} 2=$ right socket of M 1
O3 = left socket of M2
E1 = left socket of I1
E6 $=$ right socket of I3
The inputs with the prefix "I" correspond to the normal inputs, they can (depending on the selected program) handle both analog and digital signals. In an unconnected or "open" condition, they are inactive ($=0$).

The inputs with the prefix "E" are the additional inputs. The odd numbered " E " inputs have a pull-up resistor, these inputs are normally in the " 1 " state and can be changed to the "0" state by connecting to "-" (ground or OV). The even numbered "E" inputs have a pull-down resistor, these inputs are normally in the " 0 " state and can be changed to the " 1 " state by connecting to "+" (positive or 9V supply).

You can connect any output (O1 to O4) of an Electronics module to any "E" input directly. As the Electronics module's output always has a defined output level (0 V or 9 V), this satisfies the input requirement without the need for additional components or connections.

When connecting pushbuttons to " E " inputs, it is recommended that the following circuit is used:

By using this method of wiring, a "-" is connected to the "E" input when the button is not pressed and a "+" is connected to the " E " input when the button is pressed.

Other electronic devices (e.g. phototransistors) can be connected, but please note the following:

- For E2, E4, E6 inputs: connect the red connection of the phototransistor to "+" and the other terminal of the phototransistor at the respective "E" input.
- For E1, E3, E5 inputs: connect the red connection of the phototransistor to the "E" input and the other terminal of the phototransistor to "-".
- NPN transistors may be directly connected between E1, E3, E5 and "-". To connect an NPN transistor between "-" and E2, E4 or E6, a pull-up resistance ${ }^{1}$ is required for the correct operation.

Due to debouncing and the scanning interval of the electronic module, a 15 ms signal delay may occur. Note the inputs are scanned at 100 Hz (100 times per second).

[^0]
1.3 Additional programs for digital technology

1.3.1 AND / OR logic gate

Truth Table - AND Logic Gate					Truth Table - OR Logic Gate				
E1	E2	E3	O1	O2	E1	E2	E3	O1	O2
E4	E5	E6	O3	O4	E4	E5	E6	O3	O4
0	0	0	0	1	0	0	0	0	1
1	0	0	0	1	1	0	0	1	0
0	1	0	0	1	0	1	0	1	0
1	1	0	0	1	1	1	0	1	0
0	0	1	0	1	0	0	1	1	0
1	0	1	0	1	1	0	1	1	0
0	1	1	0	1	0	1	1	1	0
1	1	1	1	0	1	1	1	1	0

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}$

1.3.2 XOR Logic Gate

Truth Table - AND Logic Gate					Truth Table - XOR Logic Gate				
E1	E2	E3	O1	O2	E1	E2	E3	O1	O 2
					E4	E5	E6	O3	O4
0	0	0	0	1	0	0	0	0	1
1	0	0	0	1	1	0	0	1	0
0	1	0	0	1	0	1	0	1	0
1	1	0	0	1	1	1	0	0	1
0	0	1	0	1	0	0	1	1	0
1	0	1	0	1	1	0	1	0	1
0	1	1	0	1	0	1	1	0	1
1	1	1	1	0	1	1	1	1	0
Truth Table - OR Logic Gate									
E4	E5	E6	O3	O4					
0	0	0	0	1					
1	0	0	1	0					
0	1	0	1	0					
1	1	0	1	0					
0	0	1	1	0					
1	0	1	1	0					
0	1	1	1	0					
1	1	1	1	0					

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}$

1.3.3 D Flip-flop with Reset, JK-(RS) Flip-flop and NOT Logic Gate (inverter)

Truth Table - D Flip-flop					Truth Table - JK (RS) Flip-flop						
E1	E2	E3	O1	O 2							02
E4	E5	E6	O3	O4	E1	E2	E3	E4	E5	O1	O2
0	\uparrow	0	0	1	0	0	\uparrow	0	0	-	-
1	\uparrow	0	1	0	1	X	X	X	0	1	0
X	X	1	0	1	0	X	X	X	1	0	1
					1	X	X	X	1	-	-
					0	1	\uparrow	0	0	1	0
					0	0	\uparrow	1	0	0	1
					0	1	\uparrow	,	0	O2 ${ }^{1}$	O1 ${ }^{1}$

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}, \uparrow=$ Transition 0 V to $9 V, X=$ Don't Care

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}, \uparrow=$ Transition 0 V
to 9V, $X=$ Don't Care, - = No State
Change
${ }^{1}$ E2 and E4 $=1$:toggles O1 and O2, changes from 0 to 1 and vise-a-versa
Truth Table - NOT Gate (inverter)

E6	O3	O4
0	1	0
1	0	1

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}$
1.3.4 Test circuit - OR / AND / XOR / NOT logic gate D flip-flop / JK (RS) flip-flop

Set the DIP Switch position and Pot according to the program required.

1.3.5 Monostable or One Shot

Function Table - Monostable Running Time		
E5	E6	Time
0	0	$0.1-1$ Seconds
1	0	$1-10$ Seconds
0	1	$10-100$ Seconds
1	1	$1-10$ Minutes

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}$

1.3.6 Test Circuit - Monostable

1.4 Other Functions

1.4.1 Threshold and differential switch (analog comparator)

DIP - Switch Position	$\begin{array}{\|c\|} \hline \text { 日明 } \\ 12345 \end{array}$
Threshold Switch	Differential Switch
I1 = Phototransistor 1	$\mathrm{I} 2=$ Phototransistor 2
Pot $=$ Set point adjustment	$\mathrm{I} 3=$ Phototransistor 3
	Pot $=\underset{\text { (Sensitivity) }}{\text { Hysteresis adjustment }}$
$\begin{aligned} & \mathrm{O} 1=\begin{array}{l} 9 \mathrm{~V}, \text { when E2 exceeds the set } \\ \text { point set by the potentiometer } \\ \mathrm{O} 2=\mathrm{O} 1 \text { inverted } \end{array} \end{aligned}$	$\mathrm{O} 3=9 \mathrm{~V}$, when I 2 is greater than I 3 $\mathrm{O} 4=\mathrm{O} 3$ inverted
Application: adjust of light barrier	Application: Orientation of solar cells

1.4.2 Test Circuit - Threshold and differential switch

fischertechnik

1.4.3 Binary or BCD Counter

$\mathrm{E} 1=$ Clock input. Each $0 \mathrm{~V} \rightarrow 9 \mathrm{~V}$ transition adds one count
E2 = Count Direction:
$9 \mathrm{~V}=$ Count Up
OV = Count Down
E3 = Counter Enable. At 9V the counter operates
$\mathrm{E} 4=$ Reset input. At 9V, the counter is set to 0 (independent of all other inputs)
E5 = Count Range: $9 \mathrm{~V}=0$ to 15 (binary)
OV = 0 to 9 (BCD - Binary Coded Decimal)
O1 = Counter output, Bit $0=01$
$\mathrm{O} 2=$ Counter output, Bit $1=\mathrm{O} 2$
$\mathrm{O} 3=$ Counter output, Bit $2=\mathrm{O} 3$
O4 = Counter output, Bit $3=\mathrm{O} 4$

1.4.4 Test Circuit - Binary or BCD Counter

fischertechnik

1.4.5 Dual programmable frequency divider

DIP - Switch Position	
E1 =	Input Ch
E 2/E3 =	Divisor
E5 =	Input Ch
E4/E6 =	Divisor
Pot left =	(counter
Pot right $=$	(clockwi Example each ch
O1 =	Output
$\mathrm{O} 2=$	O1/2
$\mathrm{O} 3=$	Output
O4 =	O3/2

-	ivis	
Channel 1		Frequency Divisor
E2	E3	
Channel 2		
E4	E6	
0	0	16
1	0	12
0	1	5
1	1	3

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}$

1.4.6 Test Circuit - Dual programmable frequency divider

fischertechnikㅈํ

1.4.7 Lighting Effects / Frequency Generator

Table - Lighting Effects / Frequency Generator			
E1	E2	E3	Lighting Effect
0	0	0	4 independent Flashing Lights
1	0	0	2 Independent Alternate Flashing Lights
0	1	0	4 Blue-Light Flasher
1	1	0	Light Chaser
0	0	1	Construction Site Chaser
1	0	1	Flickering Fire
0	1	1	Navigation Lights
1	1	1	0-50Hz Frequency Output (O1 only)

Legend: $0=0 \mathrm{~V}, 1=9 \mathrm{~V}$

1.4.8 Test Circuit - Lighting Effects / Frequency Generator

fischertechnik

1．5 Transistor Test

DIP－Switch Position	$\begin{gathered} \hline \text { 日 日 日 日 日 } \\ 12345 \\ \hline \end{gathered}$
E2＝Input to Transistor	
S1＝Start Test	
The transistor is OK，if th	lectronic mod

1．5．1 Test Circuit－Transistor Test

[^0]: ${ }^{1}$ In the models merry-go-round and sliding door with contact switch an NPN transistor input is connected to the Electronics Module. Instead of the LED used in the "touch switch" circuit in the booklet, a second resistor (a pull-up resistor) is used. The transistors T1 and T2 are connected in, what is called, a "Darlington pair" configuration. When the contact switch is "open", both transistors T 1 and T 2 are "off" and 9 V is connected to the input via the "pull-up resistor". A "1" state will then appear at the input. When the switch is touched a small amount of current flows to the base of T1 which is amplified by the "Darlington pair", turning T2 on and connecting 0 V to the input. A " 0 " state then appears at the input.

