

Advanced 2-wheel robot

You will use this model to learn some more programming fundamentals. You are already
familiar with the fischertechnik components you will use from previous tasks. You will
control the model with both the IR track sensor and the gesture sensor.

Actuators, sensors, and technical accessories installed in the model:

Mini Motor Gears Gesture sensor Omniwheel IR track sensor

An explanation of the components is provided on the introductory page.

The “Advanced 2-wheel robot model” is divided into 4 programming tasks:

Task 1

Advanced_2-
wheeled_robot_1.rpp

Programming level 3
The robot travels straight ahead. If it encounters an
obstacle, it should avoid it.

Task 2

Advanced_2-
wheeled_robot_2.rpp

Programming level 3
The robot should travel along the black line, which is
the specified obstacle course.
If it leaves the black line, it should stop.

Task 3

Advanced_2-
wheeled_robot_3.rpp

Programming level 3
The program should regulate its travel on the black
line so that the model will find the black line once
again if the robot leaves the black line.

Task 4

Advanced_2-
wheeled_robot_4.rpp

Programming level 5
The robot travels along a track, and reduces its speed
if it encounters an obstacle. The direction of rotation
used to avoid the obstacle is set via a random
generator.

Task 1

You can use several subroutines from previous programming
tasks to solve this first task.

In the 2nd part of the program, you will need the following
commands: “x2_bwd”, “x2_stop”, “x2_rotR”, “x2_rotL” and
“x2_fwd”.

Just as with the “Twilight switch” model, the gesture sensor must
be initialised first. To do so, insert the block “APDS9960_init” after
the program start. The value for the input “mo” (mode) is set as 2,
because you want to work with the function “APDS9960_prox”
(distance measurement - proximity). The “Stop” command is
connected to the “Er” output.

Then, insert the block “APDS9960_prox” to measure and evaluate the
distance. The determined value is evaluated in the subsequent branch
instruction. If the value is more than 7, “J” then it will continue with the
second part of the program. If the value is less than 7, “N” the model
will start up.

Then the section of the program follows where the model travels
backwards for 1s, then stops, then turns for 1.15s (subroutine
“x2_rotR”) before jumping back before the block “APDS9960_prox”.
Insert the subroutine for forward travel at the “N branch”. Also connect
the output as a loop with the input of the subroutine “APDS9960_prox”.

Now, the program is complete and you can save it under the name

“Advanced_2-wheeled_robot_1.rpp”

on your computer. Then test the program with your model.

Task 2

As you can see in the task description, you will use the black line on the
obstacle course included in the building kit as the path of travel for the
second task.

The right image shows you what the main program should look like later
on. You will probably recognise a couple of the subroutines you have
already used in previous tasks.

Here as well, you will need to create a couple of new subroutines, such as
“follow_line”.

This is a subroutine that you can program once and use again in all
of the programs that require the robot to track along a line.

The IR sensor delivers four different input values. The output “11” is
approached depending on the value, e.g. IR7 and IR8 = 1.

The subroutine “x2_stop” follows in the main program, and the
motors will stop. Therefore, travel along the line is monitored
continuously via an endless loop, and corrected as needed.

Test out the program and save it under the name

“Advanced_2-wheeled_robot_2.rpp”

on your computer.

Task 3

Now, we’ll continue with the 3rd task. This is similar to the
previous task – but here, the robot needs to first search for
a black line. Here as well, is the main program with its
subroutines first. The subroutine “search_line” is new.

The robot uses this subroutine to search for the black line. If both IR sensors
have a value of “0”, the two motors will stop and the program leaves the
subroutine. Otherwise, the model will turn via the subroutine “x2_rotR”. Both
motors turn in opposite directions to generate a rotational movement.

You are already familiar with the subroutine, so you only need to insert it.

The same applies to the subroutines in the main program.

Important note: If you don’t remember how to insert existing subroutines, it’s simple –
just load the program in which the subroutines are used.

Select “Loaded programs” in the element group.

Now, click the folder in which the subroutines are located. The
program elements are displayed.

Simply use your mouse to drag the subroutine you need to the
programming screen, and insert it at the desired point.

Test out the program and save it under the name

“Advanced_2-wheeled-robot_3.rpp”

on your computer.

The complete example program is available at
C:\Programm(x86)\ROBOPro\Beispielprogramme\ROBOTICS
Smarttech\Advanced_2-wheeled_robot_3.rpp

Task 4

Now, let’s go on with the 4th task. This is another task involving a
way to avoid an obstacle.

First, load the program “Advanced_2-wheeled-robot_4.rpp from the folder
“C:\Programme(x86)\ROBOPro\Beispielprogamme\ROBOTICS Smarttech\

Here as well, you can look at the main program first. In comparison to
the program “Advanced_2-wheeled-robot_1.rp”, you will only fid the
subroutine “x2_rotL_R_random” and a couple of changed or added
parameters. If you want to create the program yourself, you can use
the program shown at the right.

Otherwise, learn about the way the program works using the travel
paths of the 2-wheeled robot.

Simply set up an obstacle course using a few books and start the
program. If everything works, the robot will easily avoid all of the
books.

Save the program under the name

“Advanced_2-wheeled_robot_4.rpp”

on your computer.

Then disassemble the model and turn to the next task.

