THEME FIELD 		[image: ]
Table of contents
Task 1: The model	2
(a) Checking the limit switches	3
(b) Checking the encoder motors	3
(c) Checking the servomotors	4
(d) Checking the pneumatics	4
(e) Pick and place	4
Task 2: Reference run	6
(a) Reference run of a single axis	6
(b) Reference run with servomotor	6
(c) Reference run of all axes	6
Task 3: Controlling the axes	8
(a) Control of the encoder motors	8
(b) Conversion from degrees to pulses	8
(c) Combination of the subroutines	9
(c) Conversion from degrees to servo control value	9
Task 4: Forward kinematics	10
(a) Theory and calculation	10
(b) Verification of the invoice	12
Task 5: Inverse kinematics	13
(a) Theory and calculation	13
(b) Verification of the invoice	14
(c) Ambiguities and singularities	15
Task 6: Point control	16
(a) Configuration file	17
(b) Pick and place with point control	17
Task 7: Teach-in	18
(a) Teach-in interface	19
(b) Programming a sequence	21
Task 8: Tool change	22
(a) Conversion	22
(b) Gripping task	24
Wiring diagram	25

[bookmark: _Toc158383585]Task 1: The model
Prerequisites
· Start the ROBO Pro Coding software and connect the TXT-4.0 controller to the PC.
[image: ]
Figure 1: Picture from the assembly instructions, in which axes 1-6 are labeled "Axis X".




Figure 2: Interface test
[image: Ein Bild, das Text, Screenshot, Zahl, parallel enthält.

Automatisch generierte Beschreibung]

[bookmark: _Toc158383586](a) Checking the limit switches
Three mini-switches are installed in the model as limit switches for axes 1, 2 and 3. Configure inputs I1 to I3 in the interface test as mini push-buttons. As soon as a button is pressed, the value of the corresponding input in the interface test should jump from 0 to 1. Check whether all buttons are connected correctly and are working. 

[bookmark: _Toc158383587](b) Checking the encoder motors
Axes 1, 2 and 3 are each driven by a DC motor with encoder, or encoder motor for short. The direction of rotation of the motor is controlled via the polarity of the motor and the speed of the motor is influenced via PWM (pulse width modulation). At a voltage of 0 volts, the motor stands still. The encoder, also known as a rotary encoder or pulse generator, supplies a certain number of step pulses per revolution and is connected to a counter input.

Move the individual axes using the interface test. What do you observe on the counters?

To simplify programming, we use the following convention:

· If the motor is controlled with the direction of rotation cw (clockwise), the axis moves away from the limit switch.
· If the motor is controlled with the direction of rotation ccw (counterclockwise), the axis moves towards the limit switch.

[bookmark: _Toc158383588](c) Checking the servomotors
Axes 4, 5 and 6 are part of the robot's wrist and are driven by so-called servomotors. A servo motor is a special electric motor that allows direct control of the angular position. For this purpose, a sensor for determining the angle and control electronics are located inside the servo.

Move the individual axes of the wrist using the interface test:

In what range can axes 4-6 be rotated?
What is the difference between the servo drive and the drive with encoder motor?

[bookmark: _Toc158383589](d) Checking the pneumatics
Without a tool, also known as an end effector, an industrial robot would be useless. A pneumatic gripper and a vacuum gripper are available for our industrial robot. The vacuum gripper is currently attached to the robot arm as an end effector. Use the interface test to check whether the vacuum gripper is working:
· Configure outputs O7 and O8 as outputs in the interface test.
· Start the compressor (O7) and switch the solenoid valve (O8) to suck in a workpiece.

[bookmark: _Toc158383590](e) Pick and place
Pick and place is a typical application for an industrial robot. The industrial robot picks up a workpiece at location A, moves it to location B and places it there again. In this task, we want to perform a first pick and place operation with the industrial robot without writing a program for it.

· Place a workpiece on the field labeled "Start" in the course.
· Use the interface test to move the robot so that the suction cup can pick up the workpiece.
· Use the interface test to control the compressor and the solenoid valve so that the workpiece is sucked in.
· Lift the workpiece, move the robot to target position B2 and place the workpiece there.

Tips
· Reduce the speed to be able to control the robot arm more precisely.
· Remember the convention for the direction of rotation of the axes (see task part b).
· As the workpiece is lying flat on the course, axis 4 should be in its center position. Therefore, set the servomotor S1 to the value 256.



[bookmark: _Toc158383591]Task 2: Reference run
Prerequisites
· Successful completion of task 1(a) to 1(c)

During the reference run, all axes of the robot are moved to a predefined point, the so-called reference point. The reference points of axes 1, 2 and 3 are defined by the respective limit switches. The individual axes are zeroed by the reference run so that the program knows the current position of the robot exactly. The robot can then be precisely positioned relative to the reference point by counting the pulses (see task 3).
A reference run must be performed at least once at the beginning of the program. Therefore, in this task we will write a subroutine that solves this problem for us. In addition, minor errors, such as lost pulses, can add up over time. It therefore makes sense to repeat the reference run at regular intervals so that the robot maintains its accuracy.

[bookmark: _Toc158383592](a) Reference run of a single axis
Write a program that performs a reference run for axis 1. What happens if the limit switch of axis 1 is already pressed when the program is started?

[bookmark: _Toc158383593](b) Reference run with servomotor
Axes 4, 5 and 6 do not have limit switches, as the servos each measure their own angular position and the internal control electronics move to the specified absolute position. To prevent collisions with other axes and to simplify programming, we define the center positions of axes 4, 5 and 6 as the respective reference points. 
Use the interface test to determine the control values at which the defined reference points for axes 4, 5 and 6 are reached. Write a program that moves the servos to these reference points.

[bookmark: _Toc158383594](c) Reference run of all axes
During a complete reference run, all axes of the robot are moved to their respective reference points. Write a program that performs a reference run for all axes of the robot. To do this, combine the subroutines from tasks 2(a) and 2(b).

Tips
The reference runs of the individual axes should be executed one after the other.
Does the order in which the individual reference runs are carried out play a role?


[bookmark: _Toc158383595]Task 3: Controlling the axes
Prerequisites
· Successful completion of tasks 1-2.

So far, we have learned how to move the robot to the reference point defined by the limit switch. The aim of this task is to enable the individual axes to move to any position by specifying the positioning angle of the respective axis.

[bookmark: _Toc158383596](a) Control of the encoder motors
Before we tackle the actual problem, i.e. controlling the axes by specifying a positioning angle, we will solve a sub-problem: The control of the encoder motor by specifying an absolute position. We already know from task 1 that the integrated encoder counts steps while the motor is moving. In this way, we can measure distances in the unit "steps". In addition, the reference point defines the zero position of the axis.

First, the encoder motor should move to a specified target position if the actual position is known. Once the target position has been reached, it should be saved as a new actual position in a variable so that subsequent subroutine calls can access it. 
Designs a subroutine that solves this task. In which direction does the motor rotate if target position > actual position applies? In which direction does the motor rotate if target position < actual position? What other cases need to be considered?

[bookmark: _Toc158383597](b) Conversion from degrees to pulses
The control of the axes with the unit "steps" is not convenient, as a programmer can hardly imagine what this means.

Design a formula that can be used to convert a positioning angle of axis 1 (unit degrees) into a position value (steps) for the encoder motor M1. Take into account the gearbox, which consists of a gearwheel Z20, two gearwheels Z10, a worm and the slewing ring. Then implement the formula as a function in ROBO Pro Coding.

Notes:

· The encoder motors have an accuracy of 63.9 steps per revolution.
· The large slewing ring belonging to axle 1 has 58 teeth.

[bookmark: _Toc158383598](c) Combination of the subroutines
Combine the subroutines from task parts (a) and (b) so that axis 1 can be controlled by specifying an actuating angle between 0 and 270 degrees.

Design further subroutines analogous to task parts (a) and (b) so that axes 2 and 3 can be controlled in the same way.

[bookmark: _Toc158383599](c) Conversion from degrees to servo control value
In contrast to the encoder motors, the servos are controlled by specifying an absolute value, which makes programming much easier. Nevertheless, we also require axes 4, 5 and 6 to be controlled by specifying a positioning angle.

Write a function with which axis 4 can be controlled by specifying an actuating angle. Take the following boundary conditions into account:

· The setting angle in the center position is 0 degrees
· The axis of rotation points in the direction of the tool.
· When rotating clockwise around the axis of rotation, the setting angle becomes negative.
· When rotating counterclockwise around the axis of rotation, the setting angle becomes positive.

Note: The positive rotation around the axis of rotation can be easily determined using the right-hand rule.
1. First make the thumbs-up gesture with your right hand: 👍🏼
2. Align your thumb so that it points in the direction of the axis of rotation.
3. Now look at the fingers that form a semicircle: They show you the direction of the positive rotation.


[bookmark: _Toc158383600]Task 4: Forward kinematics
Prerequisites
· Successful completion of tasks 1-3
· Basic knowledge of coordinate systems

We can now move all of the robot's axes to a defined angular position. But where is the robot's tool in this angular position?
This question can be answered by calculating the so-called forward kinematics. For our application, we use a three-dimensional Cartesian coordinate system in which the x, y and z axes are perpendicular to each other in pairs. 
All three coordinate axes intersect at a point known as the origin. The positions of objects are specified as a vector [x,y,z]. 
The unit of the coordinates in our model is millimeters. Two coordinate axes are already drawn on the enclosed course. The third axis, which is still missing, determines the height and points upwards out of the plane in a positive direction. Its zero point is at the intersection of the x and y axes.

First we measure the industrial robot and determine the following lengths:

· Distance of the axis of rotation 2 from the origin: l1 = 92.5mm
· Distance of the axis of rotation 2 from the axis of rotation 3: l2 = 150mm
· Distance of the axis of rotation 3 from the axis of rotation 5: l4 = 140mm
· Distance of the axis of rotation 5 from the tool center point (TCP): l56 = 100.5mm

[bookmark: _Toc158383601](a) Theory and calculation
With the knowledge of coordinate systems and the lengths l1, l2, l4 and l56, we can determine the position of the tool if the setting angles of axes 1 to 6 are specified.
To illustrate the forward kinematics, define the angles of axes 1, 4 and 6 as 0 and create a 2D sketch of the robot from the side (the y-coordinate of all axes and the TCP is 0).
[image: Ein Bild, das Reihe, Diagramm, parallel enthält.

Automatisch generierte Beschreibung]

The angle of axis 2 is 70°, the angle of axis 3 is 45° and the angle of axis 5 is 30°. 
Calculate the coordinates of the TCP.


[bookmark: _Toc158383602](b) Verification of the invoice
Use the subroutines from task part 3 and control axes 1-6 according to the positioning angles mentioned above. Now measure the position of the TCP with a ruler. 
Does the calculated position match the measured position?



[bookmark: _Toc158383603]Task 5: Inverse kinematics
Prerequisites
· Successful completion of tasks 1-4
· Basic knowledge of coordinate systems

The calculation of the forward kinematics is helpful to understand the movement possibilities of the articulated robot in theory. For practical applications in robot programming, however, the inverse problem exists: We know the location (position and orientation) of the end effector and want to calculate back from this to the angular positions of the individual axes. This task is referred to as backward transformation or inverse kinematics.
We have already seen in task 1 (e) that the calculation of inverse kinematics is not intuitive. In fact, the underlying mathematics of inverse kinematics is much more complex than that of forward kinematics. We will therefore illustrate the principle using a very simplified example.

[bookmark: _Toc158383604](a) Theory and calculation
The end effector of the robot should be moved to the position (-115.37, -66.61, 91.96) and the suction cup should point diagonally downwards. 
The following sketch shows a two-dimensional top view of the course. However, the plan view does not describe the individual joints or the downward inclination of the suction cup.
[image: ]

First determine the setting angle α of axis 1 graphically using a triangle.
Now find a formula to precisely calculate the setting angle of axis 1.

[bookmark: _Toc158383605](b) Verification of the invoice
Use the subroutines from task part 3 and control axis 1 to the positioning angle measured/calculated in task part (a). Use the following positioning angles for the remaining axes:

	Axis
	Angle

	Axis 2
	70°

	Axis 3
	45°

	Axis 4
	0°

	Axis 5
	30°

	Axis 6
	0°



Now use a ruler to measure the position of the TCP. Does the position given in task a (-115.37, -66.61, 91.96) match the measured position?
[bookmark: _Toc158383606](c) Ambiguities and singularities
In addition to the more complex mathematics, two other special cases can occur when calculating inverse kinematics:

1. Ambiguities
2. Singularities

Ambiguity is the case when there are several solutions for the joint angles for a specific position of the end effector. Singularity is the case when there are an infinite number of solutions for the joint angles when calculating the inverse kinematics for a specific position of the end effector and the industrial robot "loses" one or more degrees of freedom.

We will now use the interface test to illustrate such a singularity. To do this, first move axes 1, 2 and 3 to any position. However, make sure that the axes of the wrist remain freely movable in this position and do not collide with the robot arm or the course. Now set axis 5 so that its angle is 0 degrees, i.e. the end effector points in the extension of the forearm.

There is a singularity in this position: For each positioning angle of axis 4, we find a suitable positioning angle of axis 6 that reverses the movement of axis 4, i.e. the position of the end effector is not changed. Consequently, the inverse kinematics has an infinite number of solutions in this situation and the robot arm loses one degree of freedom, as the movement possibilities of axes 4 and 6 are no longer independent of each other. Use the interface test to reproduce this scenario on the model.

Can you find another position of the articulated robot in which there is a singularity? You can also move axes 1, 2 and 3 again.


[bookmark: _Toc158383607]Task 6: Point control
Prerequisites
· Successful completion of tasks 1-5
· Basic knowledge of coordinate systems

With tasks 1 to 5, we have become familiar with all the basic methodological building blocks required to program an industrial robot, from controlling the individual axes to calculating the inverse kinematics. In practical applications, however, this complexity should be hidden from the programmer of an industrial robot. Instead, the programmer should be able to concentrate on programming the movement without having to pay attention to the technical and mathematical details of the robot arm.

A typical programming environment for an industrial robot therefore offers two more abstract methods that can be used to control the robot arm:

Point control: With point control, the programmer specifies the target coordinate and the orientation of the end effector in the world coordinate system. In our course, the world coordinate system is described by the X and Y axes, with the Z axis pointing vertically upwards from the plane of the sheet. The robot arm moves all axes simultaneously so that the target point is reached as quickly as possible starting from the current position. However, the movement of the axes is not coordinated, which means that the trajectory, i.e. the path traveled by the end effector, is undefined.
Path control: For path control, the programmer also specifies the target coordinate and orientation of the end effector in the world coordinate system. The programmer also specifies the trajectory to be used to reach the target point from the starting point. The straight line in space between the starting point and the target point would be a possible trajectory. For this, all six axes must be controlled in a coordinated manner so that the end effector remains on the trajectory at all times. The advantage of path control is that the path traveled in space is clearly defined.
In ROBO Pro Coding, point control is supported by the pos_cartesian programming block. The function expects the robot's target position in Cartesian world coordinates as an argument. In this task, we will learn about point control and possible difficulties that may arise using our model.
[bookmark: _Toc158383608](a) Configuration file
Before we can start programming, let's first take a look at the configuration file of the robot arm. The configuration is available as a YAML file and describes the kinematics of the robot arm by defining the lengths of the individual axes. The advantage of such a configuration is that the point control can be implemented using a library and can also be applied to robot arms of different sizes. For example, you can modify your robot arm by lengthening or shortening individual axes. To be able to continue using the programming blocks such as pos_cartesian, only the configuration file needs to be adapted.

Now look at the "Kinematics" section of a configuration file for the industrial robot model shown below. Use a ruler to check whether the specified lengths match the model from the assembly instructions.

kinematic:
# lengths (unit: mm)
l_1: 	92.5
l_2: 	150
l_4: 	140
l_5: 	67.5
l_6: 	33	 # vacuum gripper

[bookmark: _Toc158383609](b) Pick and place with point control
First set up the course as follows:

· Place the obstacle according to the marking between the field labeled "Start" and the fields W1-W3.
· Place a workpiece on the start field.

Now write a program that controls the robot arm so that it picks up the workpiece from the start field and places it on a field of your choice in the warehouse (W1-W3, B1-B3, or R1-R3). Use the pos_cartesian programming block in ROBO Pro Coding to describe the movement of the robot arm.
Run your program. What do you notice?

[bookmark: _Toc158383610]Task 7: Teach-in
Prerequisites
· Successful completion of tasks 1-6

In the previous task, we learned about program blocks that enable simplified robot programming. A programmer combines and parameterizes the individual blocks into a sequence that can be executed by the industrial robot once programming is complete. As the industrial robot is not used on the PC while the program is being created, this approach is referred to as offline programming. 
An alternative type of programming is direct programming or online programming, in which programming takes place directly at the robot's place of use. Teach-in programming is an example of an online programming method.

With teach-in programming, the operator uses a hand-held programming device to teach the industrial robot a sequence once, which can then be saved and repeated as often as required. The hand-held programming device has joysticks and buttons that can be used to move the robot arm and control the end effector. 
For example, the individual axes of the robot can be controlled directly in a similar way to the interface test. However, the procedure in which the end effector is moved in the world coordinate system, i.e. in the X, Y or Z direction, is more convenient. 
Once a target pose has been reached, the operator saves the current pose (i.e. target coordinate and orientation of the end effector) of the robot and can move on to the next pose. In addition, the hand-held programming device enables the end effector to be controlled, for example to suck in or release a component using the vacuum suction cup. The operator repeats these steps until the robot has moved to and saved all the poses in a sequence. Once the teach-in programming is complete, a program is available that the robot can execute as often as required and thus repeat the learned sequence without the presence of a programmer.

Compared to offline programming, the teach-in procedure offers three main advantages:

1. Programming does not require knowledge of a programming language such as Python (or ROBO Pro Coding). Instead, the robot is controlled via a handheld programmer or a graphical user interface, whereby only the poses achieved are saved.
2. Programming is convenient and clear, and the operator can recognize and avoid possible collisions with the environment during programming.
3. The operator can correct possible inaccuracies in the kinematics during programming by controlling the end effector according to the target position instead of only according to coordinates. We can also observe this advantage with the fischertechnik industrial robot in particular.
However, offline programming also offers advantages over the teach-in procedure: as long as the robot is programmed using the teach-in procedure, it is blocked by the operator and cannot perform any other activity. Offline programming avoids this disadvantage, as programming can be carried out on a separate computer independently of the robot. During programming, the newly programmed sequences are tested virtually as far as possible without having to intervene in ongoing production. Once programming is complete, the program is loaded once onto the industrial robot's controller.

[bookmark: _Toc158383611](a) Teach-in interface
In this task we get to know the teach-in interface of the fischertechnik industrial robot. Instead of a hand-held programming device, the teach-in procedure of the robot is made possible via a graphical user interface in ROBO Pro Coding.

Load the sample program "Industrial_robots_teachin.ft" from the ROBO Pro Coding program library, then execute it and open the control panel:
[image: ]

The control panel offers the following options for controlling the industrial robot:

· The end effector can be moved in steps in the X, Y and Z directions. The increment can be set using the slider.
· Buttons X, Y and Z under Position: Position of end effector
· Buttons X, Y and Z under Orientation: Orientation of the end effector
· The vacuum gripper can assume the "grip" and "drop" states and grip or release the workpiece.
· Press the "Reference" button to move the robot to the reference position and then to the home position.
· Press the "Home" button to move the robot to the home position.
· The Import button is used to import the poses from the TXT 4.0 controller into the control panel
· The Export button is used to export the poses to the TXT 4.0 controller
· The "Add point" button saves the current pose as a new step in the sequence.
· The "Overwrite point" button can be used to overwrite a selected pose.
· The "First point", "Previous", "Next" and "Last point" buttons can be used to manually move to an earlier or later pose in the sequence. 
· Press the "Run" button to start the saved sequence.

Familiarize yourself with the Teach-In interface and program a simple sequence consisting of five steps of your choice.
[bookmark: _Toc158383612](b) Programming a sequence
Use the Teach-In interface to program the following sequence:

Three blue workpieces are to be placed one after the other in storage locations B1 to B3. The operator places the workpieces one after the other in the start position, from where they are picked up by the robot arm and then placed in one of the storage locations.

[bookmark: _Toc158383613]Task 8: Tool change
Prerequisites
· Successful completion of tasks 1-7

In the previous tasks, we looked at the kinematics and flexible programmability of industrial robots. In addition, interchangeable handling devices and tools increase the universal applicability of industrial robots and enable applications in a wide range of areas, such as assembly, logistics or food technology.

Frequently used handling devices such as vacuum grippers or mechanical grippers enable components to be picked up, moved and set down in production, logistics or packaging technology. Industrial robots are also equipped with welding guns or punching tools to join car body parts in automotive production.

The end effector, i.e. the tool or manipulator, is changed in order to prepare the industrial robot for a new task. This process is known as retooling or tool changing. In practice, many industrial robots have an automatic tool changer for retooling welding guns or grippers. They first place the old tool in a special device, the so-called tool station. They then move to another device in the tool station and pick up the new tool there. During the automatic tool change, the electrical and pneumatic connections between the robot and the new tool are also established.

[bookmark: _Toc158383614](a) Conversion
You can convert the fischertechnik industrial robot into a gripper robot by manually converting it.

1. Replace the vacuum gripper with the pneumatic gripper and connect the cylinder to the air supply.
[image: ] [image: ]

[image: ] [image: ]

[image: ]


2. Test the pneumatic gripper using the interface test, analogous to task 1 (d).


[bookmark: _Toc158383615](b) Gripping task
The industrial robot can grip the cube-shaped workpieces using the gripper. In this part of the task, the functionality of the gripper with teach-in programming will be explained. In contrast to the previous tasks, we will also make use of the mobility of the wrist.

First place a cube-shaped workpiece in place A on the course according to the colored marking. Now use the teach-in interface "Industrial_robots_8b.ft" to program the following sequence:

1. The robot picks up the workpiece at position A.
2. The robot places the workpiece at position B rotated by 45° according to the colored marking.
3. The robot picks up the workpiece again at position B, rotates it again by 45° and places it at position C according to the colored marking.

Note
With this teach-in interface, the end effector can be rotated around the sixth axis in the control panel via + and - under "Orientation".
[image: ]
Note the mobility of the sixth axis. The robot may have to "reach around" once at position B.


[bookmark: _Toc158383616]Wiring diagram

[image: ]


[image: ]S1
S2
S3
M2 / C2
I2
I1
I3
O8
O7
M1 / C1
M3 / C3


4
page 2 from 2
[image: ]

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

